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Abstract
We consider the integrate-and-fire model with non-stationary, stochastic inputs
and address the following issue: what are the conditions on the input currents
that make the input signal undetectable? A novel theoretical approach to tackle
the problem for the model with non-stationary inputs is introduced. When the
noise strength is independent of the deterministic component of the synaptic
input, an expression for the critical input signal is given. If the input signal
is weaker than the critical input signal, the neuron ultimately stops firing, i.e.
is not able to detect the input signal; otherwise it fires with probability one.
Similar results are established for Poisson type inputs where the strength of the
noise is proportional to the deterministic component of the synaptic input.

PACS numbers: 0540J, 0250, 0590, 8435, 8719L

1. Introduction

Single neuron models with stochastic inputs have been extensively studied during the past
decades [1, 4, 6, 7, 13, 18, 23–25, 27, 28]. Much as most theoretical studies focus on models
with constant or stationary inputs5, it is obvious that models with non-stationary inputs are of
primary interest. In fact, there is growing literature devoted to the study of biological neurons
with natural scene inputs; see, e.g., [22].

Here we consider the simplest neuronal model, the integrate-and-fire model with non-
stationary inputs. The question to be addressed is: which kind of change in the input signal is
a neuron not capable of detecting? In other words, what is the neuron’s detection limit in terms
of input signals? By detection of an input signal for a neuron, we mean that the neuron fires
spikes if the signal is presented. At a first glance, we might think that it is totally impossible to

5 Models studied in stochastic resonance are exceptional, where periodic or aperiodic input signals are considered [5,
15, 17].

0305-4470/01/081637+12$30.00 © 2001 IOP Publishing Ltd Printed in the UK 1637



1638 J Feng et al

shut down a neuron’s response to stochastic inputs. This is true for stationary inputs: a neuron
will fire with probability one due to noise. The situation is totally different for non-stationary
inputs.

Here, by employing a theoretical method called the Poisson clumping heuristic, developed
in [3], we establish two fundamental theorems on neuronal responses to input signals (see
sections 3 and 4 for exact formulations).

Case 1. When the noise amplitude is independent of the deterministic component of the
synaptic input, as for many models considered in stochastic resonance, a critical phenomenon
is found. More specifically, let the synaptic input I (t) of the integrate-and-fire model be

dI (t) = µλ(t) dt + σ dBt

where Bt is the standard Brownian motion, t is the time, σ the noise strength and µλ(t) the
input signal. If, for large t , the input signal decreases faster than −σ

√
2/γ

√
log(t/γ + C), a

neuron is ultimately not able to respond to it; otherwise the neuron fires with probability one,
where γ is the decay time of the integrate-and-fire model and C > 0 a constant. For example,
when µλ(t) = −t , the neuron is ultimately not able to respond to it.

Case 2. For Poisson type inputs, i.e.

dI (t) = µλ(t) dt + σ
√

λ(t) dBt

if µλ(t) decreases faster than −σ
√

2/γ log(t/γ + C), a neuron is not able to respond to it;
otherwise the neuron fires with probability one.

As might be expected, Poisson type inputs improve the detectable limit of a neuron. For
example, for Poisson type inputs with µλ(t) = −2σ

√
2/γ

√
log(t/γ + C), the integrate-and-

fire neuron will fire with probability one, but in the circumstances of case 1 the neuron will be
ultimately silent.

A central issue in neuroscience is the coding problem [2,16,26]. The way a neuron encodes
and then decodes inputs is still a mystery, despite a century of research. To understand the
detectable limit of a neuron will certainly help us gain some more insights into the coding
problem. Furthermore we expect that techniques developed here will also be valuable for
studying other issues for neuronal models with non-stationary inputs. The integrate-and-fire
model is the simplest and the most widely used neuronal model. We have learnt a lot from
studying it alone, as has been amply demonstrated in the literature. The results presented here
are, rigorously speaking, only proved for the integrate-and-fire model. It is expected, however,
that the conclusions drawn here may be enlightening when more complex, biophysical neuronal
models are considered.

2. The model

Suppose that a cell receives EPSPs (excitatory postsynaptic potentials) at NE excitatory
synapses and IPSPs (inhibitory postsynaptic potentials) at NI inhibitory synapses. The
activities among excitatory synapses and inhibitory synapses are correlated with correlation
coefficient c [13,19,29], and are assumed to be independent between them (see the discussion
section and [13]). When the membrane potential Zt is between the resting potential Vrest and
the threshold Vthre, its time evolution is given by

dZt = − 1

γ
(Zt − Vrest) dt + a

NE∑
i=1

dEi (t) − b

NI∑
j=1

dIj (t) (2.1)
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where 1/γ is the decay rate, Ei(t), Ii(t) are Poisson processes with rates λE(t) and λI(t),
respectively, and a, b are magnitudes of each EPSP and IPSP [4, 8, 9]. Once Zt crosses Vthre

from below a spike is generated and Zt is reset to Vrest. This model is termed the integrate-
and-fire model. We further assume that λE(t) = λI(t) = λ(t)(see the discussion section). The
integrate-and-fire model with a Poisson process input is the most commonly studied case in
the literature. Certainly it is an over-simplification of the actual situation [18] and a discussion
of it is outside the scope of this paper. Furthermore we have not included reversal potentials
here, which will cause more difficulties in analysing the model.

From now on we assume that Vrest = 0 mV. In fact, we are not going to deal with the
discrete processes Zt ; instead we consider the continuous approximation version of it given
by [8–12, 20, 21, 28]

dVt = − 1

γ
Vt dt + dI (t) (2.2)

where the synaptic input dI (t) = µ(t) dt + σ(t) dBt with

µ(t) = (aNE − bNI)λ(t) = µλ(t) (drift term)

σ 2(t) = [a2NE + b2NI + a2c(N2
E − NE) + b2c(N2

I − NI)]λ(t) = σ 2λ(t)
(2.3)

and Bt is the standard Brownian motion. The interspike interval of efferent spikes (the firing
time) is

T = inf{t : Vt � Vthre}.

3. Constant diffusion coefficient

We first consider a simple case with the diffusion coefficient independent of time (σ(t) = σ ):

dVt = −Vt

γ
dt + µλ(t) dt + σ dBt . (3.1)

This type of model is widely used in stochastic resonance and we refer the reader to, for
example [17], for further discussion.

We rewrite the equation above into a canonical form by introducing a transformation [14]
s = t/γ and Xs = Vγs = Vt :

dXs = −Xs ds + µγλ(γ s) ds + σ
√

γ
dBγs√

γ
. (3.2)

Since dB̄s = dBγs/
√

γ is again a standard Brownian motion, equation (3.2) becomes

dXs = −Xs ds + µγλ(γ s) ds + σ
√

γ dB̄s . (3.3)

The first-exit time (firing time) is then

T = inf{t : Vt � Vthre}
= γ inf{s : Xs � Vthre}. (3.4)

Solving equation (3.3) we obtain

Xu = γµ

∫ u

0
exp [−(u − s)]λ(γ s) ds + σ

√
γ

∫ u

0
exp [−(u − s)] dB̄s . (3.5)
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Hence

T = inf

{
u :

∫ u

0
exp [−(u − s)] dB̄s � 1

σ
√

γ

{
Vthre − µγ

∫ u

0
exp [−(u − s)]λ(γ s) ds

}}
.

(3.6)

Note that
∫ u

0 exp [−(u − s)] dB̄s is a standard Ornstein–Uhlenbeck process. From the results
of Poisson clumping heuristic (equation (D15a) on p 85 of [3]), we know that for t � 0

P(T � t) = 1 − exp

[
−

∫ t

0
b(u) · exp {−b2(u)/2} du

]
(3.7)

where

b(u) = Vthre − µγ
∫ u

0 exp [−(u − s)]λ(γ s) ds√
γ σ

� 0. (3.8)

Note that the requirement of b(u) being non-negative implies that stimuli are subthreshold.
For suprathreshold stimuli we certainly have P(T < ∞) = 1 (see theorem 1 below).
Equation (3.7) gives rise to an informative description of the input–output relationship of the
integrate-and-fire model with arbitrary (subthreshold) inputs. For example, the distribution
density p(t) of T (the derivative of P(T � t), equation (3.7)) is given by

p(t) = b(t) exp (−b2(t)/2) exp

[
−

∫ t

0
b(u) exp (−b2(u)/2) du

]
. (3.9)

Figure 1 depicts the distribution density of T versus time, in the case when the input signal
is strictly periodic, i.e. λ(t) = a(cos (ωt) + b) where a, b, ω are all constants. It is very
interesting to see how the output histogram is affected by the input periodic signal. When ω is
large (ω = 1 in figure 1), the histogram oscillates locally. When ω becomes small (see figure 1
with ω = 0.1 and 0.01), the oscillation disappears, as expected.

Next we determine the detectable input signal for the model we consider. To this end, we
suppose that

λ(γ s) = Vthre

µγ
+ exp (−γ s/γ )a(γ s) (3.10)

for a function a which will be specified below. b(u) defined by equation (3.8) turns out to be
(all higher order terms in the equality are omitted)

b(u) = −µ
√

γ
∫ u

0 exp [−u]a(γ s) ds

σ
.

Substituting the expression of b(u) above into equation (3.7), we have

P(T = ∞) = 1 − exp

[ ∫ ∞

0

{
µ

√
γ

∫ u

0 exp (−u)a(γ s) ds

σ

}

× exp

{
− 1

2

(
µ

√
γ

∫ u

0 exp (−u)a(γ s) ds

σ

)2}
du

]
. (3.11)

Therefore, if P(T � t) is to approach unity as t → ∞, then it is equivalent to require that the
following quantity:∫ ∞

0

[ ∫ u

0
exp (−u)a(rs) ds

]
exp

[
− (µ exp (−u)

∫ u

0 a(rs) ds)2γ

2σ 2

]
du (3.12)

should diverge. We then see that γµ2 = 2σ 2 and a(γ s) = exp (γ s/γ )
√

log(γ s/γ + C) is the
critical case.
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Figure 1. Distribution density (histogram) of T versus time with λ(t) = 0.5(cos (ωt) + 1), σ = 1,
γ = 20 ms, Vthre = 20 mV and µ = 1, constant diffusion coefficient.
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Figure 2. Input signal µλ(t) versus time. Critical curves= µλ(t) with µ = −√
2, σ = √

γ ,
C = 10, Vthre = 20 mV and γ = 20 ms.

In conclusion, considering the critical value for the input rate

λ(t) = Vthre

µγ
+

√
log(t/γ + C)

then:

• if µ < −σ
√

2/γ and C is large enough, then the signal is undetectable, that is to say
P(T = ∞) = 1,

• if µ > −σ
√

2/γ and C > 0, then the signal is detectable, that is to say P(T < ∞) = 1.

For the general case of λ(t), by combining the arguments above, we have the following
theorem.

Theorem 1 (Detectable theorem I). We consider the integrate-and-fire model defined by
equation (3.1) (see figure 2).

• If

µ · lim sup
t→∞

λ(t)√
log( t

γ
+ C)

< −σ

√
2

γ

and C is large enough, the input signal is undetectable, i.e. P(T = ∞) = 1.
• If

µ · lim inf
t→∞

λ(t)√
log( t

γ
+ C)

> −σ

√
2

γ

and C > 0, the signal is detectable, i.e. P(T < ∞) = 1.
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Theorem 1 states that for the critical situation, i.e. λ(t) ∼ √
log(t/γ + C), if the inhibition

is strong enough aNE − bNI < −σ
√

2/γ (see equation (2.3) and below), then the neuron
ultimately stop firing, otherwise it fires with a probability of one. For the general case when the
drift term is smaller than −σ

√
2/γ

√
log(t/γ + C), the neuron ultimately stop firing; otherwise

it fires with a probability of one.
The following example gives a concrete example to explain the results of theorem 1.

Example 1. Suppose that λ(t) = t + C and µ = −1, σ = 1 and γ = 1. From equation (3.7)
we conclude that

P(T = ∞) = 1 −
√

Vthre

2C
exp (−V 2

thre/2)

which tends to 1 as C tends to infinity.
Let us have another look at the exact meaning of detectable and undetectable input signals.

For a fixed, detectable input as depicted in figure 2, the neuron fires with probability one, starting
at any time. In other words, P(t0 < T < ∞) = 1. In contrast, when the input is undetectable,
the probability of firing vanishes as time goes on, i.e. P(t0 < T < ∞) → 0 with t0 → ∞.

4. Poisson type inputs

We consider a neuronal model of the following form, i.e. a diffusion approximation to a Poisson
input:

dVt = −Vt

γ
dt + µλ(t) dt + σ

√
λ(t) dBt (4.1)

where µ, σ are both constants. Again from the Poisson clumping heuristic (D18 on p 87
of [3]), we conclude that the distribution density p(t) of T is given by (see figure 3)

p(t) = b̄(t) exp (−b̄2(t)/2) exp

[
−

∫ t

0
b̄(u) exp (−b̄2(u)/2) du

]
(4.2)

where

b̄(u) = Vthre − µ
∫ u

0 exp [−(u − s)]γ λ(γ s) ds√∫ u

0 exp [−2(u − s)]γ λ(γ s)σ 2 ds
. (4.3)

A comparison of figure 1 with 3 reveals the difference between inputs of constant diffusion
coefficient and of Poisson type (a more biologically plausible case). Nevertheless, in terms
of distribution densities, the difference is obvious only when input signals oscillate fast (large
ω). In fact, it would be more informative to compare the function b(u) with b̄(u) since,
in the expression for the distribution densities, the temporal information of b(u) or b̄(u) is
averaged out. We call b(u) and b̄(u) response functions. The justification lies in the fact
that, for example, in equation (4.2), when b̄ is small and independent of time it is simply the
firing rate of the efferent spike trains. Figure 4 shows that there is a sharp difference between
the response functions b(u) and b̄(u) even when ω is small. For the input with a constant
coefficient, the response function is similar to the input; while for the input of Poisson type,
the response function is more concentrated on the peaks of the input signal (with a phase
lag). This phenomenon is very interesting and we are going to explore it further in another
publication.

Finally from equation (4.2) we know that P(T = ∞) = 1 if and only if∫ ∞
0 b̄(u) exp {−b̄2(u)/2} du is finite.

After repeating similar arguments as in the previous sections we reach the following
conclusions.
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Figure 3. Histograms versus time with λ(t) = 0.45(cos (ωt) + 1), σ = 1, γ = 20 ms,
Vthre = 20 mV and µ = 1, Poisson type inputs.
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Theorem 2 (Detectable theorem II). For the integrate-and-fire model defined by equa-
tion (4.1) the following is true.

• If

µ · lim sup
t→∞

λ(t)

log( t
γ

+ C)
< −σ

√
2

γ

and C is large enough, the input signal is undetectable, i.e. P(T = ∞) = 1.
• If

µ · lim inf
t→∞

λ(t)

log( t
γ

+ C)
> −σ

√
2

γ

and C > 0, the input signal is detectable, i.e. P(T < ∞) = 1.

Theorem 2 states that with a Poisson type input, the detectability of the input signal by the
model neuron is improved since P(T < ∞) = 1 even when µλ(t) > −√

2/γ σ log(t/γ + C),
in comparison with the case of a constant diffusion coefficient where P(T = ∞) = 1 even
when µλ(t) < −√

2/γ σ
√

log(t/γ + C).

5. How to shut down response at the critical case

In order to fully understand our results, we further analyse the critical case when λ(t) =√
log(t/γ + C) (for the constant diffusion coefficient case) or λ(t) = log(t/γ + C) (for the

Poisson type input case), i.e. we want to know how a neuron could shut down its response to
input signals. Let us introduce some more notation. Denote a = b,N = NE, r = NI/NE

and suppose that c = 0. From equation (2.3) we see that γµ2 = 2σ 2 is equivalent to
γN(1 − r)2 = 2(1 + r). Therefore when Nγ is large (which is the case: see, e.g., [7–13]),
r ∼ 1. This means that the critical case occurs when inhibitory inputs and excitatory inputs
are exactly balanced [24, 25]. Hence when the inhibitory input is stronger than the excitatory
input, the neuron ultimately stops firing; otherwise it fires with probability one.

6. Discussion

In summary we have established two fundamental theorems on which kind of input signal is
detectable by the integrate-and-fire model. We hope the theoretical approach introduced here
will be widely applicable to issues related to the integrate-and-fire model with non-stationary
inputs.

Finally we return to the assumptions in section 2.

• Correlation between excitatory and inhibitory inputs. Suppose that the correlation
coefficient between excitatory and inhibitory inputs is cI,E, i.e. we relax the assumption
that the excitatory and inhibitory inputs are independent of each other, then σ 2(t) in
equation (2.3) turns out to be

σ 2(t) = [a2NE + b2NI + a2c(N2
E − NE) + b2c(N2

I − NI) − 2abNENIc
I,E]λ(t) = σ 2λ(t).

(6.1)

All results developed in the previous sections are true mutatis mutandis.
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• The assumption that λE(t) = λI(t) = λ(t). In general we have (see equation (6.1))

µ(t) = aNEλE(t) − bNIλI(t) (drift term)
σ 2(t) = a2NEλE(t) + b2NIλI(t) + a2c(N2

E − NE)λE(t)

+b2c(N2
I − NI)λI(t) − 2abNENIc

I,E
√

λE(t)λI(t).

(6.2)

In principle, our theory developed in the previous sections is applicable, but would not be
as clear-cut as theorems 1 and 2.
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